Search results for "anaerobic membrane bioreactor"
showing 10 items of 32 documents
Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates
2020
[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated a…
Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic m…
2019
[EN] Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and …
A new strategy to maximize organic matter valorization in municipalities: combination of urban wastewater with kitchen food waste and its treatment w…
2017
[EN] The aim of this study was to evaluate the feasibility of treating the kitchen food waste (FW) jointly with urban wastewater (WW) in a wastewater treatment plant (WWTP) by anaerobic membrane technology (AnMBR). The experience was carried out in six different periods in an AnMBR pilot-plant for a total of 536 days, varying the SRT, HRT and the food waste penetration factor (PF) of food waste disposers. The results showed increased methane production of up to 190% at 70 days SRT, 24 hours HRT and 80% PF, compared with WW treatment only. FW COD and biodegradability were higher than in WW, so that the incorporation of FW into the treatment increases the organic load and the methane producti…
Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology
2020
[EN] Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and contro…
Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent
2012
This study investigated the removal of nitrogen and phosphorus from the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period of 42 days. Solids retention time was 2 days and a stable pH value in the system was maintained by adding CO2. Nitrogen and phosphorus concentrations in the SAnMBR effluent fluctuated according to the operating performance of the bioreactor and the properties of its actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable growth medium for microalgae (mean biomass productivity was 234 mgl(-1) d(-1)), achie…
Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hy…
2021
[EN] AnMBR technology is a promising alternative to achieve future energy-efficiency and environmental-friendly urban wastewater (UWW) treatment. However, the large amount of dissolved methane lost in the effluent represents a potential high environmental impact that hinder the feasibility of this technology for full-scale applications. The use of degassing membranes (DM) to capture the dissolved methane from AnMBR effluents can be considered as an interesting alternative to solve this problem although further research is required to assess the suitability of this emerging technology. The aim of this study was to assess the effect of operating temperature and hydrodynamics on the capture of…
Designing an AnMBR-based WWTP for energy recovery from urban wastewater: The role of primary settling and anaerobic digestion
2015
The main objective of this paper is to assess different treatment schemes for designing a submerged anaerobic membrane bioreactor (AnMBR) based WWTP. The economic impact of including a primary settling (PS) stage and further anaerobic digestion (AD) of the wasted sludge has been evaluated. The following operating scenarios were considered: sulphate-rich and low-sulphate urban wastewater (UWW) treatment at 15 and 30 ºC. To this aim, the optimum combination of design/operating parameters that resulted in minimum total cost (CAPEX plus OPEX) for the different schemes and scenarios was determined. The AnMBR design was based on both simulation and experimental results from an AnMBR plant featuri…
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors
2015
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON® , Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pr…
Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR)
2014
The results of a global sensitivity analysis of a filtration model for submerged anaerobic MBRs (AnMBRs) are assessed in this paper. This study aimed to (1) identify the less- (or non-) influential factors of the model in order to facilitate model calibration and (2) validate the modelling approach (i.e. to determine the need for each of the proposed factors to be included in the model). The sensitivity analysis was conducted using a revised version of the Morris screening method. The dynamic simulations were conducted using long-term data obtained from an AnMBR plant fitted with industrial-scale hollow-fibre membranes. Of the 14 factors in the model, six were identified as influential, i.e…
Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): long-term validation
2013
The aim of this study was the long-term validation of a model capable of reproducing the filtration process occurring in a submerged anaerobic membrane bioreactor (SAnMBR) system. The proposed model was validated using data obtained horn a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. The validation was carried out using both lightly and heavily fouled membranes operating at different bulk concentrations, gas sparging intensities and transmembrane fluxes. Across a broad spectrum of operating conditions, the model correctly forecast the respective experimental data in the long term. The simulation results revealed the importance of controlling irreversible f…